Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Year range
1.
Herald of Medicine ; (12): 70-73, 2018.
Article in Chinese | WPRIM | ID: wpr-665160

ABSTRACT

Objective To explore the efficacy of alprostadil combined with Bailing capsule in the treatment of early chronic kidney disease. Methods A total of 94 early stage chronic kidney disease patients were selected and divided into treatment group(n=46) and control group(n=48).The patients in control group were treated with Bailing capsule,5 capsules, tid,po.The patients in treatment group were treated with Bailing capsule combined with 2 mL alprostadil in 20 mL 0.9% sodium chloride injection,intravenous injection,qd.The patients were treated for 4 weeks as a course of treatment in both groups.After 2 courses of treatment,the improvement of renal function,the changes in cytokine levels including NK cells and T cell subsets CD+3, CD+4,CD+8,adverse reactions of two groups were observed. Results The effective rates of the control group and the treatment group were 60.42%,91.30%,respectively(P<0.05).The renal function index 24 h urine protein were(1.15± 0.35) g,serum creatinine were(78.52±10.63) μmol·L-1,urea nitrogen were(8.23±1.65) mmol·L-1,all of which were decreased significantly (P<0.05).The levels of NK cells were(21.89±2.73)%,T cell subsets CD+3were(71.02±5.61)%,CD+4were(38.84±3.52)%, CD+4/CD+8were(1.28 ± 0.14),which were increased significantly,while the level of CD+8were(30.21± 3.03)% was decreased significantly(P<0.05).There was no significant difference between two groups in the adverse reactions(P>0.05). Conclusion The combination of alprostadil and Bailing capsule is effective to early stage chronic kidney disease by improving the renal function and regulating the level of cytokines.

2.
Acta Pharmaceutica Sinica ; (12): 39-44, 2012.
Article in Chinese | WPRIM | ID: wpr-414930

ABSTRACT

In our recent study by exploring an intein-based dual-vector to deliver a B-domain-deleted FVIII (BDD-FVIII) gene, it showed that covalently ligated intact BDD-FVIII molecules with a specific coagulant activity could be produced from expressed heavy and light chains by protein trans-splicing. Here, we assessed the hypothesis that the efficiency of trans-splicing may be increased by adding to the intein sequences a pair of leucine zippers that are known to bring about specific and strong protein binding. The intein-fused heavy and light chain genes were co-transferred into cultured COS-7 cells using a dual-vector system. After transient expression, the intracellular BDD-FVIII splicing was observed and the spliced BDD-FVIII and bioactivity secreted to culture media were quantitatively analyzed. An enhanced splicing of BDD-FVIII with decreased protein precursors from gene co-transfected cells was observed by Western blotting. The amount of spliced BDD-FVIII and bioactivity secreted to the culture media were 106 +/- 12 ng x mL(-1) and 0.89 +/- 0.11 U x mL(-1) analyzed by ELISA and Coatest method respectively, which was greater than leucine zipper free intein-fused heavy and light chain genes co-transfected cells (72 +/- 10 ng x mL(-1) and 0.62 +/- 0.07 U x mL(-1)). The activity of cellular mechanism-independent protein splicing was also improved, as showed by the increasing of spliced BDD-FVIII and bioactivity in culture media from combined cells separately transfected with heavy and light chain genes which was 36 +/- 11 ng x mL(-1) and 0.28 +/- 0.09 U x mL(-1). It demonstrated that the leucine zippers could be used to increase the efficiency of protein trans-splicing to improve the efficacy of a dual-vector mediated BDD-FVIII gene delivery by strengthening the interaction between the two intein-pieces fused to heavy and light chains. It provided evidence for further study in animal model using a dual-adeno-associated virus vector to deliver FVIII gene in vivo.

3.
Acta Pharmaceutica Sinica ; (12): 734-8, 2012.
Article in Chinese | WPRIM | ID: wpr-430996

ABSTRACT

To investigate the improving effect of inter-chain disulfide formation on protein trans-splicing, we introduce a Cys point mutation at Tyr(664) in heavy chain and at Thr(1826) in light chain of B-domain-deleted FVIII (BDD-FVIII). By co-transfection of COS-7 cell with the two Cys mutated chain genes, the intracellular protein splicing, inter-chain disulfide formation, secreted BDD-FVIII and bioactivity in culture supernatant were observed. The data showed that a strengthened spliced BDD-FVIII with an inter-chain disulfide detected by Western blotting and an elevated secretion of spliced BDD-FVIII (128 +/- 24 ng mL(-1)) compared to control (89 +/- 15 ng mL(-1)), assayed by a sandwich ELISA. A Coatest was performed to assay the secretion of bioactivity in culture supernatant and shown a much higher value (0.94 +/- 0.08 u mL(-1)) compared to that of control (0.62 +/- 0.15 u mL(-1)). It suggests that inter-chain disulfide formation could improve protein trans-splicing based dual-vector delivery of BDD-FVIII gene providing experimental evidence for ongoing in vivo study.

4.
Acta Pharmaceutica Sinica ; (12): 1457-61, 2011.
Article in Chinese | WPRIM | ID: wpr-414911

ABSTRACT

Although two chain transfering separately could be used to overcome the volume limitation of adeno-associated virus vectors (AAV) in coagulation factor VIII (FVIII) gene delivery, it leads to chain imbalance for inefficient heavy chain secretion. In this study we aimed to improve the efficacy of two chain strategy in FVIII gene delivery through the degradation of glucose-regulated protein 78 (GRP78) known as a protein chaperone in endoplasmic reticulum (ER) by deoxynivalenol (DON) to decrease GRP78-bound FVIII heavy chain. By treating the two-chain gene transduced 293 cells with DON, the heavy chain (HC) secretion and FVIII bioactivity were observed. Data showed that 293 cells after three hours post-treatment with DON at a concentration of 500 ng mL(-1) resulted in obvious decrease the level of GRP78 but no effect on the cell proliferation. The HC secreted from DON-treated cells transfected with HC gene alone was 59 +/- 11 ng mL(-1), higher than that secreted by control cells (15 +/- 4 ng mL(-1)), and the HC secretion was further increasing to 146 +/- 34 ng mL(-1) in light chain (LC) gene co-transfected cells with an activity measured up to 0.66 +/- 0.15 U mL(-1), also greater than control cells (76 +/- 17 ng mL(-1) and 0.35 +/- 0.09 U mL(-1)). Taken together, these data suggest that DON-mediated GRP78 down-regulation could improve the efficacy of two-chain FVIII gene transfering by facilitating HC secretion, providing an experimental basis for in vivo dual-AAV application in FVIII gene delivery.

5.
Acta Pharmaceutica Sinica ; (12): 1232-8, 2010.
Article in Chinese | WPRIM | ID: wpr-382496

ABSTRACT

This study is to construct a chimeric human/porcine BDD-FVIII (BDD-hpFVIII) containing the substituted porcine A1 and A3 domains which proved to have a pro-secretory function. By exploring Ssp DnaB intein's protein trans-splicing a dual-vector was adopted to co-transfer the chimeric BDD-hpFVIII gene into cultured COS-7 cell to observe the intracellular BDD-hpFVIII splicing by Western blotting and secretion of spliced chimeric BDD-hp FVIII protein and bio-activity using ELISA and Coatest assay, respectively. The dada showed that an obvious protein band of spliced BDD-hpFVIII can be seen, and the amount of spliced BDD-hpFVIII protein and bio-activity in the supernatant were up to (340 +/- 64) ng x mL(-1) and (2.52 +/- 0.32) u x mL(-1) secreted by co-transfected cells which were significantly higher than that of dual-vector-mediated human BDD-FVIII gene co-transfection cells [(93 +/- 22) ng x mL(-1), (0.72 +/- 0.13) u x mL(-1)]. Furthermore, a spliced BDD-hpFVIII protein and activity can be detected in supernatant from combined cells separately transfected with intein-fused BDD-hpFVIII heavy and light chain genes indicating that intein-mediated BDD-hpFVIII splicing occurs independently of cellular mechanism. It provided evidence for enhancing FVIII secretion in the research of animal models using intein-based dual vector for the delivery of the BDD-hpFVIII gene.

6.
Acta Pharmaceutica Sinica ; (12): 595-600, 2010.
Article in Chinese | WPRIM | ID: wpr-382435

ABSTRACT

As synthesized by vascular endothelial cells and megakaryocytes, the von Willebrand factor (vWF) plays an important hemostatic role in the binding to and stabilizing blood coagulation factor VIII (FVIII) and preventing its enzymatic degradation. Our recent work demonstrated intein can efficiently ligate BDD-FVIII (B-domaim deleted FVIII) posttranslationally by protein trans-splicing after transfer of split BDD-FVIII gene by a dual-vector system. In this study we investigated the effect of vWF on secretion and activity of intein-ligated BDD-FVIII. We observed the levels of full-length BDD-FVIII antigen secreted into culture supernatant by ELISA and their activity by Coatest assay after transfection of cultured 293 cells with intein-fused BDD-FVIII heavy- and light-chain genes simultaneously with the vWF gene co-transfected. The data showed that the amount of full-length BDD-FVIII protein and their bioactivity in vWF gene co-transfected cell supernatant were 235 +/- 21 ng x mL(-1) and 1.98 +/- 0.2 u x mL(-1), respectively, greater than that of non-vWF co-transfected cell (110 +/- 18) ng x mL(-1) and 1.10 +/- 0.15 u x nL(-1)) or just BDD-FVIII gene transfected control cell (131 +/- 25 ng x mL(-1) and 1.22 +/- 0.18 u x mL(-1)) indicating the benefit of vWF gene co-transfection in the secretion and activity of intein-spliced BDD-FVIII protein. It provided evidence that vWF gene co-transfer may be useful to improve efficacy of gene therapy for hemophilia A in protein splicing-based split FVIII gene transfer.

7.
Acta Pharmaceutica Sinica ; (12): 1361-6, 2010.
Article in Chinese | WPRIM | ID: wpr-382353

ABSTRACT

We recently demonstrated that an intein-mediated protein splicing can be used to transfer B-domain-deleted FVIII (BDD-FVIII) gene by a dual-vector. In this study, we observed the effect of a variant heavy chain with six potential glycosylation sites of B domain and L303E/F309S mutations in its A1 domain, which were proven to be beneficial for FVIII secretion, on secretion of spliced BDD-FVIII. By transient co-transfection of cultured 293 cells with intein-fused variant heavy chain (DMN6HCIntN) and light chain (IntCLC) genes, the culture supernatant was analyzed quantitatively by ELISA for secreted spliced BDD-FVIII antigen and by a chromogenic assay for bioactivity. The data showed that the amount of spliced BDD-FVIII protein and coagulation activity in culture supernatant from DMN6HCIntN plus IntCLC co-transfected cells were up to (149 +/- 23) ng x mL(-1) and (1.12 +/- 0.14) u x mL(-1) respectively greater than that of intein-fused wild type heavy (HCIntN) and light chain (IntCLC) co-transfected cells [(99 +/- 14) ng x mL(-1) and (0.77 +/- 0.13) u x mL(-1)] indicating that the variant heavy chain is able to improve the secretion of spliced BDD-FVIII and activity. A cellular mechanism-independent BDD-FVIII splicing was also observed. It provided evidence for ongoing animal experiment using intein-mediated dual-AAV vector technology for delivery of the BDD-FVIII genes.

8.
Acta Pharmaceutica Sinica ; (12): 60-5, 2010.
Article in Chinese | WPRIM | ID: wpr-382237

ABSTRACT

The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein-mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-transfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors, encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.

9.
Acta Pharmaceutica Sinica ; (12)2010.
Article in Chinese | WPRIM | ID: wpr-596869

ABSTRACT

The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein- mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-tansfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors,encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.

10.
Chinese Journal of Biotechnology ; (12): 1710-1716, 2010.
Article in Chinese | WPRIM | ID: wpr-351544

ABSTRACT

Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to cystic fibrosis, an autosomal recessive genetic disorder affecting a number of organs including the lung airways, pancreas and sweat glands. In order to investigate the post-translational ligation of CFTR with reconstructed functional chloride ion channel and the split Ssp DnaB intein-mediated protein trans-splicing was explored to co-deliver CFTR gene into eukaryotic cells with two vectors. The human CFTR cDNA was split after Glu838 codon before the second transmembrane dome (TMD2) into two halves of N- and C-parts and fused with the coding sequences of split Ssp DnaB intein. Pair of eukaryotic expression vectors pEGFP-NInt and pEYFP-IntC were constructed by inserting them into the vectors pEGFP-N1 and pEYFP-N1 respectively. The transient expression was carried out for observing the ligation of CFTR by Western blotting and recording the chloride current by patch clamps when cotransfection of the pair of vectors into baby hamster kidney (BHK) cells. The results showed that an obvious protein band proven to be ligated intact CFTR can be seen and a higher chloride current and activity of chloride channel were recorded after cotransfection. These data demonstrated that split Ssp DnaB intein could be used as a strategy in delivering CFTR gene by two vectors providing evidence for application of dual adeno-associated virus (AAV) vectors to overcome the limitation of packaging size in cystic fibrosis gene therapy.


Subject(s)
Animals , Cricetinae , Humans , Cell Line , Chloride Channels , Physiology , Cystic Fibrosis Transmembrane Conductance Regulator , Genetics , Dependovirus , Genetics , Genetic Vectors , Membrane Potentials , Genetics , Protein Processing, Post-Translational , Protein Splicing
11.
Chinese Journal of Biotechnology ; (12): 1101-1106, 2009.
Article in Chinese | WPRIM | ID: wpr-296950

ABSTRACT

We studied the ligation of coagulation factor VIII heavy and light chains in Escherichia coli by utilizing the intein-mediated protein trans-splicing. A B-domain deleted factor VIII (BDD-FVIII) gene was broken into two halves of heavy and light chains before Ser1657 which meets the splicing required conserved residue and then fused to 106 and 48 amino acid-containing N-part termed Int-N and C-part termed Int-C coding sequences of split mini Ssp DnaB intein respectively. These two fusion genes were constructed into a prokaryotic expression vector pBV220. Through induction for expression of recombinant protein it displayed an obvious protein band as predicted size of BDD-FVIII protein on SDS-PAGE gel. Western blotting using factor VIII specific antibodies confirmed that this protein band is BDD-FVIII produced by protein trans-splicing. It demonstrated that the heavy and light chains of BDD-FVIII can be efficiently ligated with the Ssp DnaB intein-mediated protein trans-splicing. These results provided evidence for encouraging our ongoing investigation with intein as a means in dual AAV vectors carrying the factor VIII gene to overcome the packaging size limitation of a single AAV vector in hemophilia A gene therapy.


Subject(s)
DnaB Helicases , Genetics , Escherichia coli , Genetics , Metabolism , Factor VIII , Chemistry , Genetics , Metabolism , Inteins , Physiology , Peptide Fragments , Chemistry , Genetics , Metabolism , Protein Splicing , Physiology
SELECTION OF CITATIONS
SEARCH DETAIL